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1 Introduction

One type of non-perturbative solitonic objects in superstring theories (see, for example, [2])

is nowadays called D-branes [3]. The lowest order stringy interaction between two such

parallel Dp-branes separated by a distance can be computed either as an open string one-

loop annulus diagram with one end of the open string located at one D-brane and the other

end at the other D-brane or as a closed string tree-level cylinder diagram with one D-brane,

represented by a closed string boundary state, emitting a closed string, propagating for a

certain amount of time and finally absorbed by the other D-brane, also represented by

a closed string boundary state. When the two D-branes are at rest, the net interaction

vanishes by making use of the usual “abstruse identity” [3] and this goes by the name of

“no-force” condition, which usually indicates that the underlying system preserves certain

number of spacetime supersymmetries.

In addition to the simple strings or simple D-branes, i.e., extended objects charged

under only one NS-NS potential or one R-R potential, there also exist their supersymme-

try preserving bound states such as (F, Dp) [4–11] and (Dp−2, Dp) [12–14], i.e., extended

objects charged under more than one potential. It would be interesting to know how to

compute the forces between two such bound states separated by a distance. Since each

of the bound states involves at least two kinds of branes, the force structure is richer and

more interesting to explore. Our focus here will be on the above mentioned two types of

the so-called non-threshold BPS bound states, namely (F, Dp) and (Dp−2, Dp), with even

p in IIA and odd p in IIB, respectively.

The non-threshold BPS bound state (F, Dp), charged under both NS-NS 2-form poten-

tial and R-R (p+1)-form potential, is formed from the fundamental strings and Dp branes

by lowering the system energy through dissolving the strings in the Dp branes, turning

the strings into a worldvolume electric flux F0a with the flux pointing along the direction
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of the original strings. The similar picture applies to the non-threshold BPS (Dp−2, Dp)

bound state charged under both R-R (p−1)-form potential and R-R (p+1)-form potential,

where the initial Dp−2 branes dissolve in Dp branes, giving rise to a worldvolume magnetic

flux Fab with the spatial directions a and b pointing along the codimension-2 directions of

the original Dp−2 branes inside the Dp branes. Dirac charge quantization implies that the

two potentials for either bound state are characterized by their corresponding quantized

charges, therefore each bound state is characterized by a pair of integers (m,n). When the

pair of integers is co-prime, the system is stable (otherwise it is marginally unstable) [15].

In a previous paper [1], the present authors along with the other two used the descrip-

tion of a boundary state with a quantized world-volume flux given in [11, 14, 18] for the

bound state and computed the tree-level cylinder diagram interaction amplitude between

two (F, Dp) or between two (Dp−2, Dp) bound states when the two bound states are placed

parallel at a separation in a sense that the Dp branes in one bound state are along the same

directions as those in the other bound state and so are the two fluxes. In the present paper,

we will extend the computations to exhaust the remaining cases for which the two sets of

Dp branes are still parallel at a separation but the two fluxes point differently. Concretely

we will consider: 1) the two bound states are both (F, Dp) but with their respective non-

vanishing quantized electric fluxes F0a and F0b pointing in a different direction, i.e., with

a 6= b; 2) the two bound states are both (Dp−2, Dp) but with the respective non-vanishing

quantized magnetic fluxes Fab (a < b) and Fcd (c < d) sharing at most one common index,

i.e., either a = c but b 6= d or a = d or b = d but a 6= c or a 6= c and b 6= d; and 3)

one bound state is (F, Dp) and the other (Dp−2, Dp) with the electric flux F0a pointing

along either or neither of the two spatial indices of the magnetic flux Fcd, i.e., either a = c

or a = d or a 6= c, d. When the two fluxes share one common index (either temporal or

spatial) in each of the above three cases, we find that all the amplitudes have the similar

structure to the one when the two fluxes share both of their two indices as given in [1],

therefore with many features in common. However, when the two fluxes share no common

index, the structure is different and more general, including the aforementioned one as a

special case, therefore having more rich and interesting features.

Given each bound state characterized by a pair of integers (mi, ni) with i = 1, 2, we

also find that the non-degenerate (i.e., mini 6= 0) force is in general attractive when the

two fluxes are both magnetic or when one flux is magnetic and the other electric with the

two sharing one common index and with the magnetic flux dominating over the electric

flux in effect. However, we are certain that this force is attractive only at large separation

when the two fluxes are both electric or when one flux is electric and the other magnetic

either with the two sharing no common index or with the two sharing one common index

and with the electric flux dominating over the magnetic flux in effect. When the two fluxes

share one common index, the interaction amplitude can vanish only if there are one electric

flux and one magnetic flux present and the string coupling is completely determined by

the two pairs of the quantized charges with each characterizing the corresponding bound

state. When the two fluxes share no common index, the amplitude can vanish only if the

two fluxes are both magnetic and have the same magnitude. In either case, the underlying

system preserves only 1/4 of space-time supersymmetries.
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We also study the analytic structures of amplitudes under consideration and for the

case with both fluxes magnetic or with the magnetic flux dominating over the electric

flux in effect when the two shares one common index, the amplitude is real and diverges

when the brane separation is on the order of string scale, signalling the onset of tachyonic

instability. For each of the remaining cases, i.e., with one electric flux or at least one

dominant electric flux present, the amplitude has an imaginary part and this gives rise to

a non-vanishing rate for open string pair production. In particular, when the two fluxes

share no common index, the rate of pair production of open strings is greatly enhanced

by the presence of this fixed magnetic flux even when the electric flux is weak. This rate

can be very significant even before the onset of tachyonic instability from the real part of

the amplitude when the brane separation is on the order of string scale. Both this rate

enhancement and the onset of tachyonic instability are not seen in a similar context when

the two fluxes share at least one common index.

This paper is organized as follows. In the following section, we will give a very brief

recall of the boundary state with a given external flux, providing the representation for the

non-threshold (F, Dp) or (Dp−2, Dp) bound state. In section 3, we calculate the interaction

amplitudes at the closed string tree-level cylinder diagram for those cases as specified

above using the closed string boundary state approach with each state characterized by

an arbitrary pair of integers (mi, ni) (i= 1, 2), and study the underlying properties. We

summarize the results in section 4.

2 The boundary state

We in this section review very briefly what we need about the boundary state of D-branes

with a constant external field on the world-volume and set the conventions for this paper.

A rather complete account of this is given in [11, 14, 16–18].

In the closed string operator formalism, the supersymmetric BPS D-branes of type II

theories can be described by means of boundary states |B〉 [19, 20]. For such a description,

we have two sectors, namely NS-NS and R-R sectors, respectively. Both in the NS-NS and

in R-R sectors, there are two possible implementations for the boundary conditions of a

D-brane which correspond to two boundary states |B, η〉 with η = ±. However, only the

following combinations

|B〉NS =
1

2
[|B,+〉NS − |B,−〉NS] , (2.1)

and

|B〉R =
1

2
[|B,+〉R + |B,−〉R] (2.2)

are selected by the GSO projection in the NS-NS and in the R-R sectors, respectively. The

boundary state |B, η〉 is the product of a matter part and a ghost part [16] as

|B, η〉 =
cp
2
|Bmat, η〉|Bg, η〉, (2.3)

where

|Bmat, η〉 = |BX〉|Bψ, η〉, |Bg, η〉 = |Bgh〉|Bsgh, η〉. (2.4)
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The overall normalization cp can be unambiguously fixed from the factorization of ampli-

tudes of closed strings emitted from a disk [14, 21] and is given by

cp =
√
π
(

2π
√
α′
)3−p

. (2.5)

As discussed in [11], the operator structure of the boundary state does not change even

with the presence of an external flux on the worldvolume and is always of the form

|BX〉 = exp

[

−
∞
∑

n=1

1

n
α−n · S · α̃−n

]

|BX〉(0), (2.6)

and

|Bψ, η〉NS = −i exp



iη
∞
∑

m=1/2

ψ−m · S · ψ̃−m



 |0〉 (2.7)

for the NS-NS sector and

|Bψ, η〉R = −exp

[

iη

∞
∑

m=1

ψ−m · S · ψ̃−m

]

|B, η〉(0)R (2.8)

for the R-R sector.1 The matrix S and the zero-mode contributions |BX〉(0) and |B, η〉(0)R

encode all information about the overlap equations that the string coordinates have to

satisfy, which in turn depend on the boundary conditions of the open strings ending on the

D-brane. They can be determined respectively [11, 19] as

S =

(

[

(η − F̂ )(η + F̂ )−1
]

αβ
,−δij

)

, (2.9)

|BX〉(0) =

√

− det
(

η + F̂
)

δ9−p(qi − yi)

9
∏

µ=0

|kµ = 0〉, (2.10)

for the bosonic sector, and

|Bψ, η〉(0)R =

(

CΓ0Γ1 · · ·Γp1 + iηΓ11

1 + iη
U

)

AB

|A〉|B̃〉 (2.11)

for the R sector. In the above, the Greek indices α, β, . . . label the world-volume directions

0, 1, . . . , p along which the Dp brane extends, while the Latin indices i, j, . . . label the di-

rections transverse to the brane, i.e., p + 1, . . . , 9. We also define F̂ = 2πα′F with F the

external worldvolume field. Also in the above, we have denoted by yi the positions of the

D-brane along the transverse directions, by C the charge conjugation matrix and by U the

following matrix

U(F̂ ) =
1

√

− det(η + F̂ )
; exp

(

−1

2
F̂αβΓ

αΓβ
)

; (2.12)

1The phases chosen in (2.7) and (2.8) are just for the convenience when we compute the couplings to

various bulk massless modes.
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where the symbol ; ; means that one has to expand the exponential and then to anti-

symmetrize the indices of the Γ-matrices. |A〉|B̃〉 stands for the spinor vacuum of the R-R

sector. We would like to point out that the η in the above means either sign ± or the

flat signature matrix (−1,+1, . . . ,+1) on the world-volume and should not be confused

from the content.

Note that the ghost and super-ghost fields are not affected by the type of the boundary

conditions imposed, therefore the corresponding part of the boundary state remains the

same as the one without the presence of an external worldvolume field and their explicit

expressions can be found in [16]. We would like to point out that the boundary state

must be written in the (−1,−1) super-ghost picture in the NS-NS sector, and in the

asymmetric (−1/2,−3/2) picture in the R-R sector in order to saturate the super-ghost

number anomaly of the disk [16, 22].

3 The interaction amplitude calculations

We now proceed to calculate the cylinder-diagram amplitude between any two of the non-

threshold BPS (F, Dp) and/or (Dp−2, Dp) bound states at a separation Y using the bound-

ary state approach for those cases as specified in the Introduction. In addition, we will

use the results to discuss certain properties of the underlying systems such as the analytic

structure of the respective amplitudes and calculate the rate of pair production of open

strings in the open string channel for those cases involving at least one electric-like flux.

The interaction vacuum amplitude can be calculated via

Γ = 〈B(m1, n1)|D|B(m2, n2)〉 (3.1)

where the bound state with a constant world-volume field in each sector has been given

in section 2 and is characterized by a pair of integers (mi, ni) with i = 1, 2 and D is the

closed string propagator defined as

D =
α′

4π

∫

|z|≤1

d2z

|z|2 z
L0 z̄L̃0 . (3.2)

Here L0 and L̃0 are the respective left and right mover total zero-mode Virasoro generators

of matter fields, ghosts and superghosts. For example, L0 = LX0 + Lψ0 + Lgh0 + Lsgh0 where

LX0 , L
ψ
0 , L

gh
0 and Lsgh0 represent contributions from matter fields Xµ, matter fields ψµ,

ghosts b and c, and superghosts β and γ, respectively, and their explicit expressions can

be found in any standard discussion of superstring theories, for example in [17], therefore

will not be presented here even though we will need them in our following calculations.

The above total vacuum amplitude has contributions from both NS-NS and R-R sectors,

respectively, and can be written as Γ = ΓNS +ΓR. In calculating either ΓNS or ΓR, we need

to keep in mind that the boundary state used should be the GSO projected one as given in

eq. (2.1) or eq. (2.2). For this purpose, we need to calculate first the following amplitude

Γ(η′, η) = 〈B1, η′|D|B2, η〉 (3.3)
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in each sector with η′η = ± and Bi = B(mi, ni). In doing the calculations, we can set

L̃0 = L0 in the above propagator due to the fact that L̃0|B〉 = L0|B〉, which can be used

to simplify the calculations. Given the structure of the boundary state in eq. (2.3) and

eq. (2.4), the amplitude Γ(η′, η) can be factorized as

Γ(η′, η) =
n1n2c

2
p

4

α′

4π

∫

|z|≤1

d2z

|z|2A
X AbcAψ(η′, η)Aβγ(η′, η), (3.4)

where we have replaced the cp in the boundary state given in section 2 by ncp with n an

integer to count the multiplicity of the Dp branes in the bound state. In the above,

AX = 〈B1
X ||z|2L

X
0 |B2

X〉, Aψ(η′, η) = 〈B1
ψ, η

′||z|2L
ψ
0 |B2

ψ, η〉,

Abc = 〈B1
gh||z|2L

gh
0 |B2

gh〉, Aβγ(η′, η) = 〈B1
sgh, η

′||z|2L
sgh
0 |B2

sgh, η〉. (3.5)

In order to perform the calculations using the boundary states given in (2.6)–(2.8), (2.10)

and (2.11), we need to specify the worldvolume gauge field and the S-matrix given in (2.9)

for both (F, Dp) and (Dp−2, Dp) bound states, respectively. Let us denote the boundary

states 〈B1, η′| and |B2, η〉 in evaluating the amplitude in (3.3) as BS1 and BS2, respec-

tively. Without loss of generality, we can always choose the external flux F̂1 associated

with BS1 the following way for simplicity. When this boundary state is the type of (F,

Dp), we choose F̂1 as

F̂1 =



















0 −f1

f1 0

·
·
·
0



















(p+1)×(p+1)

. (3.6)

The corresponding longitudinal part of the S matrix as given in (2.9) is now

S1αβ =



























−1+f2
1

1−f2
1

2f1
1−f2

1

− 2f1
1−f2

2

1+f2
1

1−f2
1

1

·
·
·
1



























(p+1)×(p+1)

. (3.7)

While for the boundary state being (Dp−2, Dp), we choose the F̂1 as

F̂1 =



















0

·
·
·

0 −f1

f1 0



















(p+1)×(p+1)

, (3.8)
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with now the quantized f1 = −m1/n1. We then have the longitudinal part of the S ma-

trix as

S1αβ =



























−1

1

·
·
·

1−f2
1

1+f2
1

2f1
1+f2

1

− 2f1
1+f2

1

1−f2
1

1+f2
1



























(p+1)×(p+1)

. (3.9)

With the above choice for F̂1, the external worldvolume flux F̂2 for BPS2 shall be

the following for those cases considered in this paper. When this boundary state is the

type of (F, Dp), the only non-vanishing components are (F̂2)0a = −(F̂2)a0 = −f2 with

the given spatial worldvolume index a 6= 1 when BS1 is also the same type but without

such a restriction on this index when BPS1 is the type of (Dp−2, Dp). While for this

boundary state being the type of (Dp−2, Dp), the only non-vanishing components are

(F̂2)bc = −(F̂2)cb = −f2 for given worldvolume spatial indices c and b ( c > b) and with

the only restriction b 6= p − 1 when BS1 is of the same type but without any restriction

when BS1 is the type of (F, Dp). Here each flux fi with i = 1, 2 is quantized with a pair

of integers (mi, ni) as discussed in [1], and is given for the case of electric flux as

fi = − mi

△1/2
e(mi,ni)

, (3.10)

where

△e(mi,ni) ≡ m2
i +

n2
i

g2
s

(3.11)

with (mi, ni) a pair of integers, gs the string coupling constant and the subscript ‘e’ repre-

senting the flux being electric, while for the case of magnetic flux

fi = −mi

ni
, (3.12)

and for latter purpose we also define

△m(mi,ni) = m2
i + n2

i , (3.13)

with the subscript ‘m’ representing the flux being a magnetic one.

With the above preparations, we are now ready to perform rather straightforward

calculations for the various matrix elements specified in (3.5) in either NS-NS or R-R

sector for those cases under consideration, using (2.6)–(2.8), (2.10) and (2.11) for the

boundary states with F̂ and the matrix S as just described as well as the full expression of

S as given in (2.9). The calculations2 can be clarified as two types according to whether

2For p = 3, the interaction with only one boundary state carrying a particular form of flux was considered

for a completely different purpose in [23]. An implicit expression for the interaction in general was given

in [24] but the discussion on the R-R sector there is confusing and we don’t agree in this part, in particular

on the regularization procedure of zero-modes.
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the two worldvolume fluxes (F̂1)αβ and (F̂2)γδ discussed above have one common index

(either temporal or spatial) or have no common index at all for which we will discuss each

separately next.

3.1 Two fluxes with one common index

The common index for the two fluxes just mentioned can be along either a temporal or

a spatial direction and for the present case we need the worldvolume spatial dimensions

p ≥ 2. For these cases, the corresponding amplitude has the same structure as the one

obtained in [1] when the two fluxes share the same indices. For simplicity, let us denote

the electric flux as ‘e’ and magnetic flux as ‘m’ and so all possibilities in the present case

can be denoted as3 (e, e), (e, m), (m, e) and (m, m) which represent that BS1 and BS2 are

both of the type (F, Dp), BS1 the type of (F, Dp) while BS2 the type of (Dp−2, Dp), BS1

the type of (Dp−2, Dp) and BS2 the type of (F, Dp), and BS1 and BS2 both of the type

(Dp−2, Dp), respectively. We have now the various matrix elements specified in (3.5) as

AX = CF Vp+1 e
− Y 2

2πα′t

(

2π2α′ t
)− 9−p

2

∞
∏

n=1

1

(1 − λ|z|2n)(1 − λ−1|z|2n)(1 − |z|2n)8 ,

Abc = |z|−2
∞
∏

n=1

(1 − |z|2n)2, (3.14)

for both NS-NS and R-R sectors,

AβγNS(η
′, η) = |z|

∞
∏

n=1

1

(1 + η′η |z|2n−1)2
,

AψNS =
∞
∏

n=1

(1 + η′η λ|z|2n−1)(1 + η′η λ−1 |z|2n−1)(1 + η′η |z|2n−1)8, (3.15)

for NS-NS sector, and

AβγR (η′, η)AψR(η′, η) = −24 |z|2 DF δη′η,+

∞
∏

n=1

(1 + λ |z|2n)(1 + λ−1 |z|2n)(1 + |z|2n)6, (3.16)

for the R-R sector. Note that we have |z| = e−πt above, the matrix elements for ghosts

and superghosts are independent of the external fluxes as expected, and in (3.16) we have

followed the prescription given in [16, 17] not to separate the contributions from matter

fields ψµ and superghosts in the R-R sector in order to avoid the complication due to the

respective zero modes. Also in the above, we have

D−1
F = CF =



























√

(1 − f2
1 )(1 − f2

2 ) for (e, e),

√

(1 − f2
1 )(1 + f2

2 ) for (e,m),

√

(1 + f2
1 )(1 + f2

2 ) for (m,m),

(3.17)

3Note that the (m, e) case can be obtained from the (e, m) case by sending f1 → if1, f2 → if2 in what

follows. So for simplicity, we will not list this case explicitly. Note also that the (m, m) case can be similarly

obtained from (e, e) case with the same replacements. However, we would like to discuss these two later

cases explicitly since the force nature and other properties of these two cases are rather different.
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and

λ+ λ−1 = 2(2D2
F − 1) =



































2
1+f2

1 +f2
2−f

2
1 f

2
2

(1−f2
1 )(1−f2

2 )
for (e, e),

2
1+f2

1−f
2
2 +f2

1 f
2
2

(1−f2
1 )(1+f2

2 )
for (e,m),

2
1−f2

1−f
2
2−f

2
1 f

2
2

(1+f2
1 )(1+f2

2 )
for (m,m).

(3.18)

Note that in both equations above, the other cases list above can be obtained, for example,

from the (e, e) case simply by sending fi to its imaginary value if the corresponding flux

is a magnetic one. For (e, e), DF > 1 and for (m, m), DF < 1. For (e, m) or (m, e), when

DF > 1 we say that the electric flux is dominant in effect while DF < 1 we say that the

magnetic flux is dominant in effect.

As discussed in [1], in calculating AX and Aψ(η′, η) as given explicitly above, we have

made use of an important property for the S matrix

ST µ
ρSρ

ν = δµ
ν , (3.19)

with T denoting the transpose. This property enables us to perform unitary transforma-

tions of the respective operators in the boundary states (2.6)–(2.8) such that the S matrix

appearing, for example, in BS1 completely disappears, while leaving BS2 with a new S ma-

trix as S = S2S
T
1 , in the course of evaluating the respective AX or Aψ. This new S matrix

shares the same property (3.19) as the original S1 and S2 do but its determinant is always

equal to one. Therefore this S matrix under consideration can always be diagonalized to give

two eigenvalues λ and λ−1 with their sum as given in (3.18) above and the other eight eigen-

values all equal to one. This is the basis for the structure appearing in the contributions

due to the respective oscillators to the AX and Aψ(η′, η) as given in (3.14)–(3.16) above.

We can now have the vacuum amplitude in the NS-NS sector as

ΓNS = NS〈B1|D|B2〉NS

=
n1n2 Vp+1CF

2(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

×|z|−1

[

∞
∏

n=1

(1 + λ |z|2n−1)(1 + λ−1 |z|2n−1)(1 + |z|2n−1)6

(1 − λ |z|2n)(1 − λ−1 |z|2n)(1 − |z|2n)6

−
∞
∏

n=1

(1 − λ |z|2n−1)(1 − λ−1 |z|2n−1)(1 − |z|2n−1)6

(1 − λ |z|2n)(1 − λ−1 |z|2n)(1 − |z|2n)6

]

, (3.20)

where we have used the GSO projected boundary state in (2.1) for |Bi〉NS (i = 1, 2) with

Bi as defined previously and have made use of the matrix elements in (3.14) and (3.15)

and the amplitude in (3.4). Also we have used in the above
∫

|z|≤1

d2z

|z|2 = 2π2

∫ ∞

0
dt, (3.21)

with |z| = e−πt. The corresponding vacuum amplitude in the R-R sector is now

ΓR = R〈B1|D|B2〉R
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= −8n1n2 Vp+1

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

×
∞
∏

n=1

(1 + λ |z|2n)(1 + λ−1 |z|2n)(1 + |z|2n)6
(1 − λ |z|2n)(1 − λ−1 |z|2n)(1 − |z|2n)6 , (3.22)

where we have used the GSO projected boundary state in (2.2) for |Bi〉R (i = 1, 2) again

with Bi as defined previously and made use of the matrix elements in (3.14) and (3.16)

and the amplitude in (3.4) as well as the equation (3.21). For both of (3.20) and (3.22),

we have also made use of

c2p

32π(2π2α′)
7−p
2

=
1

(8π2α′)
p+1
2

× 1

2
, (3.23)

where we have used the explicit expression (2.5) for cp. We also always assume both n1

and n2 are positive integers and the p-branes in the non-threshold bound states are both

Dp branes (or both anti Dp branes). In the case when the p-branes in either of the non-

threshold bound states (but not both) are anti Dp branes, the corresponding ΓR will switch

sign from the one above but the ΓNS will remain the same. In what follows, we will fo-

cus on that the p-branes in both non-threshold bound states are Dp-branes, i.e., (3.22) is

valid. The case when the p-branes in either of the bound states are anti Dp-branes can be

similarly analyzed.

The total vacuum amplitude is now

Γ = ΓNS + ΓR

=
n1n2 Vp+1CF

2(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

×
{

|z|−1

[

∞
∏

n=1

(1 + λ |z|2n−1)(1 + λ−1 |z|2n−1)(1 + |z|2n−1)6

(1 − λ |z|2n)(1 − λ−1 |z|2n)(1 − |z|2n)6

−
∞
∏

n=1

(1 − λ |z|2n−1)(1 − λ−1 |z|2n−1)(1 − |z|2n−1)6

(1 − λ |z|2n)(1 − λ−1 |z|2n)(1 − |z|2n)6

]

−24DF

∞
∏

n=1

(1 + λ |z|2n)(1 + λ−1 |z|2n)(1 + |z|2n)6
(1 − λ |z|2n)(1 − λ−1 |z|2n)(1 − |z|2n)6

}

, (3.24)

which looks in form exactly the same as the one for the case when BS1 and BS2 are both of

the same type, i.e., either (F, Dp) or (Dp−2, Dp), and the corresponding two worldvolume

fluxes are along the same directions, as calculated in [1]. This is part of the basic result

of this paper. This amplitude can also be expressed nicely in terms of θ-functions and

the Dedekind η-function with their standard definitions as given, for example, in [27]. We

then have

Γ =
n1n2 Vp+1CF sinπν

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

× 1

η9(it)

[

θ3(ν|it) θ3
3(0|it)

θ1(ν|it)
− θ4(ν|it)θ3

4(0|it)
θ1(ν|it)

− θ2(ν|it)θ3
2(0|it)

θ1(ν|it)

]

, (3.25)
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where we have defined λ = e2πiν and used the fact cos πν = DF = C−1
F which can be

obtained from λ+ λ−1 = 2(2D2
F − 1) as given in (3.18) with CF and DF given in (3.17) .

We also have

CF sinπν =



























i
√

f2
1 + f2

2 − f2
1f

2
2 for (e, e),

√

−f2
1 + f2

2 (1 − f2
1 ) for (e,m),

√

f2
1 + f2

2 + f2
1 f

2
2 for (m,m).

(3.26)

Note that for an electric flux 0 < |fi| < 1 while for a magnetic flux 0 < |fi| < ∞ and so

ν = iν0 with 0 < ν0 <∞ for case (e, e), ν = ν0 with 0 < ν0 < 1/2 for case (m, m) but for

(e, m), ν can be either real or imaginary depending on whether the magnetic flux or the

electric flux dominates. For (e, m), when

|f2| <
|f1|

√

1 − f2
1

, (3.27)

the corresponding ν is imaginary, otherwise it will be real. Also only for this case (as well

for (m, e) case), the corresponding amplitude can vanish with non-vanishing fluxes, which

signals the preservation of certain number of corresponding spacetime supersymmetries.

This actually occurs at (now ν = 0)

f2 = ± f1
√

1 − f2
1

, (3.28)

which gives rise to a quantized string coupling as

gs =
n1

n2

|m2|
|m1|

. (3.29)

To validate our computations, we need to have gs < 1 which puts also constraint on the re-

spective two pairs of integers above. As will be shown in the appendix, eq. (3.28) is precisely

the condition for the underlying system to preserve also 1/4 of spacetime supersymmetries.

Our above amplitude can be greatly simplified if we make use of the following identity

as discussed in [1] for θ-functions

2 θ4
1(ν|τ) = θ3(2ν|τ) θ3

3(0|τ) − θ4(2ν|τ) θ3
4(0|τ) − θ2(2ν|τ) θ3

2(0|τ), (3.30)

and it is given by

Γ =
2n1n2 Vp+1CF sinπν

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

1

η9(it)

θ4
1(
ν
2 |it)

θ1(ν|it)
,

=
24 n1n2 Vp+1CF sin4 πν

2

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

×
∞
∏

n=1

(

1 − eiπν |z|2n
)4 (

1 − e−iπν |z|2n
)4

(1 − |z|2n)6 (1 − e2iπν |z|2n) (1 − e−2iπν |z|2n)
, (3.31)

– 11 –



J
H
E
P
0
9
(
2
0
0
9
)
0
9
3

where in the second equality we have made use of explicit expressions for the Dedekind

η-function and the theta-function θ1 and in the above

sin4 πν

2
=

1

4
(cos πν − 1)2 =

1

4
(DF − 1)2. (3.32)

We now consider the large Y limit of the amplitude (3.31) for p ≤ 6. This amounts

to accounting for the massless-mode contribution of closed string. Due to the exponential

suppression of large Y , we need only to keep the leading-order contributions of the following

in the integrand for large t,

θ1(ν|it) → 2e−
πt
4 sinπν, θ1(

ν

2
|it) → 2e−

πt
4 sin

πν

2
, η(it) → e−

πt
12 , (3.33)

since now |z| = e−πt → 0. So

Γ → 2n1n2 Vp+1CF sinπν

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

1

e−
3πt
4

24 e−πt sin4 πν
2

2 e−
πt
4 sinπν

,

=
24 n1n2 Vp+1CF sin4 πν

2

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2 ,

=
24 n1n2 Vp+1CF sin4 πν

2

(8π2α′)
1+p
2

(

2πα′

Y 2

)
7−p
2

Γ

(

7 − p

2

)

,

=
C(m1, n1;m2, n2)

Y 7−p
(3.34)

where

C(m1, n1;m2, n2) =
c2p Vp+1U(m1, n1;m2, n2)

(7 − p)Ω8−p
. (3.35)

In the above, (7−p)Ω8−p = 4ππ(7−p)/2/Γ((7−p)/2) with Ωq the volume of unit q-sphere and

U(m1, n1;m2, n2) ≡ 4n1n2CF sin4 πν

2
,

=







































(n1n2−g2sΩee)
2

g2s Ωee
for (e, e),

“

gsn2 △
1/2
e(m1,n1)

−n1△
1/2
m(m2,n2)

”2

gs Ωem
for (e,m),

(n1n2−Ωmm)2

Ωmm
for (m,m),

(3.36)

where Ωee = △1/2
e(m1,n1)

△1/2
e(m2,n2)

, Ωem = △1/2
e(m1,n1)

△1/2
m(m2,n2)

and Ωmm =

△1/2
m(m1,n1)

△1/2
m(m2,n2)

with △e(mi,ni) and △m(mi,ni) defined in (3.11) and (3.13), re-

spectively. For a non-vanishing flux, either electric or magnetic, i.e, mi 6= 0 (i = 1, 2), the

above U(m1, n1;m2, n2) can vanish only for the case (e, m) (or (m, e)) and if this occurs,

the corresponding amplitude as well as its large separation limit vanishes. The condition

for this to occur is exactly the same as the one given in (3.29).
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We will have U(m1, n1;m2, n2) > 0 in all cases considered above if the string coupling

constant is not quantized as given in (3.29) for the case of (e, m). Note that each

numerator in the infinite product in the integrand in the second equality of (3.31) can be

re-expressed as

(

1 − eiπν |z|2n
)4 (

1 − e−iπν |z|2n
)4

=
(

1 − 2 cos πν |z|2n + |z|4n
)4
> 0, (3.37)

so the sign of the interaction amplitude will depend on that of the factor in each

denominator in the infinite product in the integrand

(

1 − e2iπν |z|2n
) (

1 − e−2iπν |z|2n
)

=
(

1 − 2 cos 2πν |z|2n + |z|4n
)

, (3.38)

which is always positive for the case of (m, m) and the case of (e, m) when (3.27) is

not satisfied, respectively. In other words, for the later case, the magnetic flux plays

at least the equally important role as the electric flux and now ν is real. Then the

corresponding interaction amplitude in each of the above two cases is greater than zero

and is solely determined by the positiveness of U(m1, n1;m2, n2). In this aspect it shares

the same feature as its long distance interaction, reflecting the attractive nature of the

interaction. While this factor is still positive for large t but it can be negative for small

t for the case of (e, e) and the case of (e, m) when (3.27) is satisfied, respectively. In

other words, for the (e, m) case, the electric flux now plays a dominant role and ν is

now imaginary. For either of the present two cases, while the long distance interaction

amplitude is again greater than zero (implying also an attractive interaction ) and is also

solely determined by the positiveness of the corresponding U(m1, n1;m2, n2), the sign of

the small separation amplitude (corresponding to small t contribution) is uncertain in the

present representation of integration variable t since even with the factor in (3.38) less than

zero, the sign of the product of infinite number of such factors in the integrand remains

indefinite. So one expects some interesting physics to appear in this case for small t.

The small t contribution to the amplitude mainly concerns about the physics for small

separation Y . The appropriate frame for describing the underlying physics as well as the

analytic structure as a function of the separation in the short cylinder limit t → 0 is in

terms of an annulus, which can be achieved by the Jacobi transformation t → t′ = 1/t.

This is also stressed in [29] that the lightest open string modes now contribute most and

the open string description is most relevant. So in terms of the annulus variable t′, noting

η(τ) =
1

(−iτ)1/2
η

(

−1

τ

)

,

θ1(ν|τ) = i
e−iπν

2/τ

(−iτ)1/2
θ1

(

ν

τ

∣

∣

∣
− 1

τ

)

, (3.39)

the amplitude in (3.31) can now be reexpressed as

Γ = −iU(m1, n1;m2, n2)Vp+1

2(8π2α′)
1+p
2

sinπν

sin4 πν
2

∫ ∞

0

dt′

t′
e−

Y 2t′

2πα′ t′
1−p
2

1

η9(it′)

θ4
1(

−iνt′

2 |it′)
θ1(−iνt′|it′)

,
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= −i4U(m1, n1;m2, n2)Vp+1

(8π2α′)
1+p
2

sinπν

sin4 πν
2

∫ ∞

0

dt′

t′
e−

Y 2t′

2πα′ t′
1−p
2

sin4
(

−iπνt′

2

)

sin (−iπνt′)

×
∞
∏

n=1

(

1 − eπνt
′ |z|2n

)4 (

1 − e−πνt
′ |z|2n

)4

(1 − |z|2n)6 (1 − e2πνt
′ |z|2n) (1 − e−2πνt′ |z|2n)

, (3.40)

where we have made use of the expression for U(m1, n1;m2, n2) given in (3.36) and

now |z| = e−πt
′

. We follow [1, 26] to discuss the underlying analytic structure and the

possible associated physics of the amplitude of (3.40). For the case when ν is real as

mentioned above, we limit ourselves to the interesting non-BPS amplitude, i.e., ν = ν0

with 0 < ν0 < 1/2, and for this the above amplitude is purely real and has no singularities

unless Y ≤ π
√

2να′, i.e. on the order of string scale, for which the integrand is dominated

by, in the short cylinder limit t′ → ∞,

lim
t′→∞

e−
Y 2t′

2πα′ θ1(−iπνt′/2|it′)
i η(it′)θ1(−iπνt′|it′)

∼ lim
t′→∞

e−
Y 2t′

2πα′ sin4(−iπνt′/2)
i sin(−iπνt′) ∼ lim

t′→∞
e−

t′

2πα′
(Y 2−2π2να′).

(3.41)

The contribution of the annulus to the vacuum amplitude (energy) should be real if the

integrand in (3.40) have no simple poles on the positive t′-axis since the imaginary part of

the amplitude is given by the sum of residues at the poles times π due to the integration

contour passing to the right of all poles as dictated by the proper definition of the Feynman

propagator [30]. In the present case, the amplitude appears purely real and there are no

simple poles on the positive t′-axis, therefore giving zero imaginary amplitude, i.e., zero

pair-production (absorptive) rate of open strings, which is consistent with the conclusion

reached in [31] in quantum field theory context and also pointed out in a similar context

in [1, 32]. When Y ≤ π
√

2ν0α′, i.e., on the order of string scale, the amplitude diverges as

indicated in (3.44) and this happens in a similar fashion as in the case of a brane/antibrane

system as discussed in [39, 40] but now caused by the presence of dominant magnetic

flux or fluxes. The appearance of the divergent amplitude indicates the breakdown of the

calculations, signalling the onset of tachyonic instability caused by the dominant magnetic

flux or fluxes4 and the relaxation of the system to form a new non-threshold bound state.

However, the detail of this requires further dynamical understanding.

Let us move to the case when the electric flux or fluxes are dominant in a sense

mentioned earlier. We have now ν = iν0 with 0 < ν0 < ∞ (ν0 = 0 corresponds to BPS

4With 0 < ν = ν0 < 1/2, in addition to the evidence given in the text, that the open string tachyon

mode appears to arise is also indicated from the leading term eπνt
′

, which diverges in the short cylinder

limit t′ → ∞, in the expansion of the θ-functions and η-function in (3.40) in the open string channel. Note

also that in the case of (e, m), ν can be zero when the string coupling satisfies (3.29) and this divergent

term, therefore the tachyon mode, then disappears and this is entirely consistent with the fact that the

amplitude also vanishes, signalling the underlying system being BPS and preserving certain number of

spacetime supersymmetries.
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case and is not considered here). The amplitude (3.40) is now

Γ =
4U(m1, n1;m2, n2)Vp+1

(8π2α′)
1+p
2

sinhπν0

sinh4 πν0
2

∫ ∞

0

dt′

t′
e−

Y 2t′

2πα′ t′
1−p
2

sin4
(

πν0t′

2

)

sin (πν0t′)

×
∞
∏

n=1

(

1 − eiπν0t
′ |z|2n

)4 (

1 − e−iπν0t
′ |z|2n

)4

(1 − |z|2n)6 (1 − e2iπν0t′ |z|2n) (1 − e−2iπν0t′ |z|2n)
. (3.42)

Exactly the same as the cases discussed in [1, 26], the above integrand has also an infinite

number of simple poles on the positive real t′-axis at t′ = (2k + 1)/ν0 with k = 0, 1, 2, . . ..

This leads to an imaginary part of the amplitude, which is given as the sum over the

residues of the poles as described in [30, 33]. Therefore the rate of pair production of open

strings per unit worldvolume in the present context is

W ≡ −2ImΓ

Vp+1
,

=
8U(m1, n1;m2, n2)

ν0(8π2α′)
1+p
2

sinhπν0

sinh4 πν0
2

∞
∑

k=0

(

ν0

2k+1

)
1+p
2

e
− (2k+1)Y 2

2πν0α
′

∞
∏

n=1

(

1+e−2nπ(2k+1)/ν0

1−e−2n(2k+1)π/ν0

)8

,

=
32n1n2 tanhπν0

ν0(8π2α′)
1+p
2

∞
∑

k=0

(

ν0

2k + 1

)
1+p
2

e
− (2k+1)Y 2

2πν0α
′

∞
∏

n=1

(

1 + e−2n(2k+1)π/ν0

1 − e−2n(2k+1)π/ν0

)8

,

(3.43)

where we have used U(m1, n1;m2, n2) = 4n1n2CF sinh4 πν0/2 in the present context and

ν0 can be determined from

tanhπν0 =



















√
g2sm

2
1m

2
2+n2

1m
2
2+n2

2m
2
1

gs Ωee
for (e, e),

√
m2

1n
2
2g

2
s−n

2
1m

2
2

gsn2△
1/2
e(m1,n1)

for (e,m),

(3.44)

where △e(mi,ni) is defined in (3.11) with i = 1, 2 and Ωee = △1/2
e(m1,n1)

△1/2
e(m2,n2)

as defined

earlier. Also in the above, the condition (3.27) for the case of (e, m) needs to be satisfied. In

the present context, it is gs > n1|m2|/(n2|m1|). Note that the above rate is suppressed by

the brane separation and the integer k but increases with the vlue of ν0 which is expected.

Let us consider ν0 → 0 and ν0 → ∞ limits for each case considered above. The former

limit corresponds to the near extremal limit which requires both electric fluxes to be small

or equivalently ni ≫ gsmi with i = 1, 2 for the case of (e, e) and (gsn2|m1|−n1|m2|) → 0+

for the case of (e, m). In either of these two cases, ν0 → 0 and tanhπν0 → πν0. The rate

is now approximated well by the leading k = 0 term as

W ≈ 32n1n2 π
( ν0

8π2α′

)
1+p
2
e
− Y 2

2πν0α
′ , (3.45)

vanishing small as expected. The ν0 → ∞ limit requires that the electric flux or fluxes

all reach their respective critical field limit in either case considered here. In addition,
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we need gs |m1|/n1 ≫ |m2|/n2 for the case of (e, m). Then each term in the summation

of (3.43) diverges and so does the rate, signalling also an instability as mentioned in a

similar context in [35].

3.2 Two fluxes without common index

We now discuss the cases when the two non-vanishing worldvolume constant fluxes (F̂1)αβ
and (F̂2)γδ specified at the beginning of this section share no common index, i.e., α, β 6= γ, δ.

So we have only three cases to consider: 1) (e, m), 2) (m, e) and 3) (m, m). For the former

two cases, we need p ≥ 3 for the spatial dimensions of Dp branes in the non-threshold

bound states while for the later case, we need p ≥ 4. If (F̂1)αβ is an electric flux as

specified in (3.6), then we have the case 1) above with (F̂2)γδ a magnetic flux. We choose

then its only two non-vanishing components (F̂2)cd = −(F̂2)dc = −f2 at two given spatial

indices c, d with the constraint c < d and c 6= 1. If (F̂1)αβ is a magnetic flux as specified

in (3.8), we can have either case 2) above with the only two non-vanishing electric flux

components (F̂2)0a = −(F̂2)a0 = −f2 with a 6= p − 1, p or the case 3) with the only two

non-vanishing magnetic components (F̂2)cd = −(F̂2)dc = −f2 with now the spatial indices

c < d and c, d 6= p− 1, p. We have then the various matrix elements specified in (3.5) as

AX = CF Vp+1 e
− Y 2

2πα′t

(

2π2α′ t
)− 9−p

2

∞
∏

n=1

1

(1 − |z|2n)6
2
∏

j=1

1

(1 − λj|z|2n)(1 − λ−1
j |z|2n)

,

Abc = |z|−2
∞
∏

n=1

(1 − |z|2n)2, (3.46)

for both NS-NS and R-R sectors,

AβγNS(η
′, η) = |z|

∞
∏

n=1

1

(1 + η′η |z|2n−1)2
,

AψNS =
∞
∏

n=1

(1 + η′η |z|2n−1)6
2
∏

j=1

(1 + η′η λj |z|2n−1)(1 + η′η λ−1
j |z|2n−1), (3.47)

for NS-NS sector, and

AβγR (η′, η)AψR(η′, η) = −24 |z|2 DF δη′η,+

∞
∏

n=1

(1 + |z|2n)4
2
∏

j=1

(1 + λj |z|2n)(1 + λ−1
j |z|2n),

(3.48)

for the R-R sector. Note that we have |z| = e−πt above and again in (3.48) we follow the

prescription given in [16, 17] not to separate the contributions from matter fields ψµ and

superghosts in the R-R sector in order to avoid the complication due to the respective zero

modes. Also in the above,5 we have

D−1
F = CF =











√

(1 − f2
1 )(1 + f2

2 ) for (e,m),

√

(1 + f2
1 )(1 + f2

2 ) for (m,m),

(3.49)

5By the same token, the (m, e) case can be similarly discussed, therefore not repeated in what follows

for simplicity.
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and

λ1 + λ−1
1 = 2(2D2

F1
− 1) =















2
1+f2

1

1−f2
1

for (e,m),

2
1−f2

1

1+f2
1

for (m,m),

(3.50)

λ2 + λ−1
2 = 2(2D2

F2
− 1) =















2
1−f2

2

1+f2
2

for (e,m),

2
1−f2

2

1+f2
2

for (m,m),

(3.51)

where DF = DF1DF2 .

With the above matrix elements and by using (3.3) and (3.4), we can have the ampli-

tude in the NS-NS sector using (3.1) with the GSO projected boundary state in the NS-NS

sector defined in (2.1) as

ΓNS =
n1n2 Vp+1CF

2(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

×|z|−1





∞
∏

n=1

(1 + |z|2n−1)4

(1 − |z|2n)4
2
∏

j=1

(1 + λj |z|2n−1)(1 + λ−1
j |z|2n−1)

(1 − λj |z|2n)(1 − λ−1
j |z|2n)

−
∞
∏

n=1

(1 − |z|2n−1)4

(1 − |z|2n)4
2
∏

j=1

(1 − λj |z|2n−1)(1 − λ−1
j |z|2n−1)

(1 − λj |z|2n)(1 − λ−1
j |z|2n)



 , (3.52)

and similarly we have the amplitude in the R-R sector using the GSO projected boundary

state given in (2.2) as

ΓR = −8n1n2 Vp+1

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

×
∞
∏

n=1

(1 + |z|2n)4
(1 − |z|2n)4

2
∏

j=1

(1 + λj |z|2n)(1 + λ−1
j |z|2n)

(1 − λj |z|2n)(1 − λ−1
j |z|2n)

. (3.53)

In obtaining the above amplitudes, we have made use of equations (3.21) and (3.23) and

some cautions mentioned in the previous subsection below (3.23) also apply and will not

be repeated here.

The total amplitude is then

Γ = ΓNS + ΓR

=
n1n2 Vp+1CF

2(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

×







|z|−1





∞
∏

n=1

(1 + |z|2n−1)4

(1 − |z|2n)4
2
∏

j=1

(1 + λj |z|2n−1)(1 + λ−1
j |z|2n−1)

(1 − λj |z|2n)(1 − λ−1
j |z|2n)
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−
∞
∏

n=1

(1 − |z|2n−1)4

(1 − |z|2n)4
2
∏

j=1

(1 − λj |z|2n−1)(1 − λ−1
j |z|2n−1)

(1 − λj |z|2n)(1 − λ−1
j |z|2n)





−24DF

∞
∏

n=1

(1 + |z|2n)4
(1 − |z|2n)4

2
∏

j=1

(1 + λj |z|2n)(1 + λ−1
j |z|2n)

(1 − λj |z|2n)(1 − λ−1
j |z|2n)







, (3.54)

where the structure looks a bit different from the one given in the previous subsection

and in [1] for which the two fluxes share at least one common direction. As we will

show, the previous structure for amplitudes is just a special case of the present one. The

above amplitude can be re-expressed in a nice form in terms of various θ-functions and

the Dedekind η-function with their standard definitions as mentioned in the previous

subsection. We then have

Γ =
2n1n2 Vp+1 tan πν1 tan πν2

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

× 1

η6(it)

[

θ3(ν1|it) θ3(ν2|it) θ2
3(0|it)

θ1(ν1|it) θ1(ν2|it)
− θ4(ν1|it) θ4(ν2|it) θ2

4(0|it)
θ1(ν1|it)θ1(ν2|it)

−θ2(ν1|it) θ2(ν2|it) θ2
2(0|it)

θ1(ν1|it) θ1(ν2|it)

]

, (3.55)

where we have defined λj = e2πiνj and used the fact cos πνj = DFj which can be obtained

from λj+λ
−1
j = 2(2D2

Fj
−1) as given in (3.50) and (3.51) with DFj = 1/

√

1 − f2
j for an elec-

tric flux and DFj = 1/
√

1 + f2
j for a magnetic flux for j = 1, 2, respectively. We also have

tan πνj =











i|fj | for an electric flux,

|fj| for amagnetic flux,

(3.56)

where the subscript index j = 1, 2. Note that for an electric flux 0 < |fj| < 1 while for

a magnetic flux 0 < |fj | < ∞ and so νj = iνj0 with 0 < νj0 < ∞ for an electric flux and

νj = νj0 with 0 < νj0 < 1/2 for a magnetic flux. The above amplitude can be greatly

simplified if the following identity for θ-functions is employed6

2 θ2
1

(

ν1 − ν2

2

∣

∣

∣

∣

τ

)

θ2
1

(

ν1 + ν2

2

∣

∣

∣

∣

τ

)

= θ3(ν1|τ)θ3(ν2|τ)θ2(0|τ) − θ4(ν1|τ)θ4(ν2|τ)θ2
4(0|τ)

−θ2(ν1|τ)θ2(ν2|τ)θ2(0|τ), (3.57)

and the amplitude becomes

Γ =
4n1n2 Vp+1 tanπν1 tanπν2

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

1

η6(it)

θ2
1

(

ν1−ν2
2

∣

∣ it
)

θ2
1

(

ν1+ν2
2

∣

∣ it
)

θ1(ν1|it)θ1(ν2|it)
,

6This identity can be obtained from the general one (iv) on page 468 given in [28]. The notations there for

various θ-functions are θr(z) ≡ θr(z|τ ) with r = 1, 2, 3, 4. In obtaining (3.57) in the text, we need to make

choices for the variables as y′ = 0, z′ = 0, w′ = x + y, x′ = −x + y and set x = (ν1 − ν2)/2, y = (ν1 + ν2)/2.
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=
24 n1n2 Vp+1CF sin2 π(ν1−ν2)

2 sin2 π(ν1+ν2)
2

(8π2α′)
1+p
2

∫ ∞

0

dt

t
e−

Y 2

2πα′t t−
7−p
2

×
∞
∏

n=1

1

(1 − |z|2n)4
2
∏

j=1

(1 − eπi(ν1+(−)jν2)|z|2n)2(1 − e−πi(ν1+(−)jν2)|z|2n)2
(1 − e2πiνj |z|2n)(1 − e−2πiνj |z|2n) , (3.58)

where in the second equality we have used the explicit expression for θ1(ν|τ) and

C−1
F = DF = DF1DF2 with DFj = cos πνj. One can check easily with the known

properties of θ1(ν|τ) that both (3.58) and (3.55) will reduce their basic structures to

their corresponding ones obtained in the previous subsection or in [1] where the two

worldvolume fluxes share at least one common direction if we set either ν1 or ν2 → 0

in (3.58) and (3.55). Therefore the basic structure of either (3.58) or (3.55) is more general

than their respective previous correspondence just mentioned. For later purpose, let us

define the following quantity similar to (3.36) as

U(m1, n1;m2, n2) ≡ 4n1n2CF sin2 π(ν1 − ν2)

2
sin2 π(ν1 + ν2)

2
= n1n2

(DF1 −DF2)
2

DF1DF2

,

=















(n1n2−gsΩem)2

gs Ωem
for (e,m),

“

n1△
1/2
m(m2,n2)

−n2△
1/2
m(m1,n1)

”2

Ωmm
for (m,m),

(3.59)

where Ωem = △1/2
e(m1,n1)

△1/2
m(m2,n2)

and Ωmm = △1/2
m(m1,n1)

△1/2
m(m2,n2)

as before with

△e(mj ,nj) and △m(mj ,nj) defined in (3.11) and (3.13), respectively. One can check easily

that only for the (m, m) case above, U(m1, n1;m2, n2) can vanish and this occurs at

|m1|/n1 = |m2|/n2 (n1n2 > 0) or f1 = ±f2, giving a vanishing amplitude, an indication

of preservation of certain number of spacetime supersymmetries. This is interesting and

a bit counterintuitive, and it indicates that when the magnetic flux in one non-threshold

bound state shares no common direction with the magnetic flux in the other non-threshold

bound state and when their magnitude is the same, then the force acting between the two

cancels. As will be shown in the appendix, the above condition is precisely the one for

this system to preserve also 1/4 of spacetime supersymmetries.

Following what we did in the previous subsection, the large separation amplitude can

be obtained from (3.58) and is

Γ =
C(m1, n1;m2, n2)

Y 7−p
, (3.60)

where

C(m1, n1;m2, n2) =
c2p Vp+1 U(m1, n1;m2, n2)

(7 − p)Ω8−p
, (3.61)

with U(m1, n1;m2, n2) now given in (3.59).

Note that if the condition |m1|/n1 = |m2|/n2 (n1n2 > 0), giving rise to

U(m1, n1;m2, n2) = 0, for the case of (m, m) mentioned above is excluded, we have then

U(m1, n1;m2, n2) > 0 for all cases considered in this subsection. Note also the following
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factor in the numerator in the infinite product in the integrand in the second equality

in (3.58)

2
∏

j=1

(1 − eπi(ν1+(−)jν2)|z|2n)2(1 − e−πi(ν1+(−)jν2)|z|2n)2

=
[

(1+|z|4n)2+2|z|4n(cos 2πν1+cos 2πν2)−4|z|2n(1+|z|4n) cos πν1 cos πν2

]2
>0, (3.62)

so the sign of the amplitude is again determined by the following factor in the denominator

in the infinite product in the integrand

2
∏

j=1

(1 − e2πiνj |z|2n)(1 − e−2πiνj |z|2n)

= (1 − 2|z|2n cos 2πν1 + |z|4n)(1 − 2|z|2n cos 2πν2 + |z|4n), (3.63)

which is positive for the case of (m, m) for which both ν1 and ν2 are real and for large

t for the remaining case but can be negative for small t for this case since now ν1 is

imaginary. Therefore the interaction amplitude is positive for the case of (m, m) once

again as expected, reflecting the attractive nature of the interaction between BS1 and BS2

in the present case. For the case of (e, m) while the large separation amplitude is still

positive and the corresponding interaction is attractive, the small separation amplitude is

once again uncertain for the same reason mentioned in the previous subsection in a similar

situation. We again expect interesting physics to arise in the small t limit for these two

cases to which we will turn next.

The best picture to study the small t physics is in terms of open string description [29]

and this can be realized by the transformation of integration variable t → t′ = 1/t which

converts the closed string cylinder diagram to the open string annulus diagram. So in terms

of the annulus variable t′, with (3.39), the amplitude (3.58) is now

Γ = −4n1n2 Vp+1 tan πν1 tanπν2

(8π2α′)
1+p
2

∫ ∞

0

dt′

t′
e−

Y 2t′

2πα′ t′
3−p
2
θ2
1(−iν1−ν22 t′|it′) θ2

1(−iν1+ν2
2 t′|it′)

η6(it′) θ1(−iν1t′|it′)θ1(−iν2t′|it′)
,

= −24 n1n2 Vp+1 tanπν1 tanπν2

(8π2α′)
1+p
2

∫ ∞

0

dt′

t′
e−

Y 2t′

2πα′ t′
3−p
2

sin2(−iπ ν1−ν22 t′) sin2(−iπ ν1+ν22 t′)

sin(−iπν1t′) sin(−iπν2t′)

×
∞
∏

n=1

1

(1 − |z|2n)4
2
∏

j=1

(1 − eπ(ν1+(−)jν2)t′ |z|2n)2(1 − e−π(ν1+(−)jν2)t′ |z|2n)2
(1 − e2πνjt

′ |z|2n)(1 − e−2πνjt′ |z|2n) , (3.64)

where |z| = e−πt
′

. We once again follow [1, 26] to discuss the analytic structure of the above

amplitude and the associated physics. For the present (m, m) case, both ν1 and ν2 are real

with their respective range 0 < ν1, ν2 < 1/2 and the above amplitude appears positive and

has no simple poles on the positive t′-axis. For the same reason mentioned in the previous

subsection, this amplitude has no imaginary part, therefore giving zero rate of open string

pair production as expected. Note that this amplitude has also a singularity as t′ → ∞
when Y ≤ π

√

2|ν1 − ν2|α′, i.e., on the order of string scale, and this happens also in a
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similar fashion as in the brane/antibrane system mentioned in previous subsection but now

caused purely by the presence of magnetic fluxes. This singularity can be examined from

lim
t′→∞

e−
Y 2t′

2πα′ θ2
1(
ν1−ν2

2i t′|it′) θ2
1(
ν1+ν2

2i t′|it′)
−η6(it′) θ1(−iν1t′|it′)θ1(−iν2t′|it′)

∼ lim
t′→∞

e−
Y 2t′

2πα′ sin2(π ν1−ν22i t′) sin2(π ν1+ν22i t′)

i2 sin(−iπν1t′) sin(−iπν2t′)
,

∼ lim
t′→∞

e−
Y 2t′

2πα′ [eπ|ν1−ν2|t
′

+ O(1)]. (3.65)

The appearance of the divergent amplitude also indicates the breakdown of the calcula-

tions, signalling the onset of tachyonic instability caused by the magnetic fluxes and the

relaxation of the system to form a new non-threshold bound state. In addition, that the

open string tachyon mode appears to arise is also indicated from the leading term eπ|ν1−ν2|t
′

,

which diverges in the short cylinder limit t′ → ∞, in the expansion of the θ-functions and η-

function in (3.64) in the open string channel. This is supported further by the evidence that

this divergence, therefore the tachyon mode, disappears when |ν1 − ν2| vanishes but when

this happens the amplitude also vanishes, indicating the underlying system being BPS and

preserving certain number of spacetime supersymmetries as mentioned earlier. Once again,

however, the detail of the underlying dynamical process requires further understanding.

For the remaining case, ν1 = iν10 is imaginary with 0 < ν01 < ∞ and ν2 = ν20 is real

with 0 < ν20 < 1/2. Then from the second expression in (3.64), we have the amplitude

Γ =
4n1n2 Vp+1 tanhπν10 tanπν20

(8π2α′)
1+p
2

∫ ∞

0

dt′

t′
e−

Y 2t′

2πα′ t′
3−p
2

(cos πν10t
′ − coshπν20t

′)2

sin(πν10t′) sinh(πν20t′)

×
∞
∏

n=1

∏2
j=1(1 − eπ(iν10+(−)jν20)t′ |z|2n)2(1 − e−π(iν10+(−)jν20)t′ |z|2n)2

(1 − |z|2n)4(1 − 2|z|2n cos 2πν10t′ + |z|4n)(1 − e2πν20t′ |z|2n)(1 − e−2πν20t′ |z|2n) ,

(3.66)

where the following factor is positive and can be expressed as

2
∏

j=1

(1 − eπ(iν10+(−)jν20)t′ |z|2n)2(1 − e−π(iν10+(−)jν20)t′ |z|2n)2

= [(1+|z|4n)(1+|z|4n−4|z|2n cos πν10t coshπν20t
′)+2|z|4n(cos 2πν10t

′+cosh 2πν20t
′)]2.

(3.67)

When ν20 6= 0 as we always assume in this subsection, the above amplitude has simple poles

occurring at t′k = k/ν10 with k = 1, 2, . . . and the number of simple poles in the present

case doubles in comparison with the case when the two fluxes share at least one common

direction as discussed in the previous subsection and in [1, 26, 30, 32–34, 36].7 Then the rate

of pair production of open strings per unit worldvolume is the imaginary part of the above

7In some of these papers, the number of simple poles appeared also given by t′k = k/ν01 with k = 1, 2, . . .

due to that their amplitude expressions were not simplified using the identity (3.30) for various θ-functions

and the contribution to the amplitude from each even k is actually zero. This can also be seen easily

from (3.66) when taking ν20 = 0.
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amplitude, which is the sum of the residues of the poles times π following the prescription

given in the previous subsection as described in [30, 33]. We then have the rate as

W ≡ −2ImΓ

Vp+1
,

=
8n1n2 tanhπν10 tanπν20

ν10

∞
∑

k=1

(−)k+1
( ν10

8kπ2α′

)
1+p
2
e
− kY 2

2πν10α
′

[

cosh kπν20
ν10

− (−)k
]2

ν10
k sinh kπν20

ν10

×
∞
∏

n=1

[

1 − 2(−)ke
− 2nkπ

ν10 cosh kπν20
ν10

+ e
− 4nkπ

ν10

]4

[

1 − e
− 2nkπ

ν10

]6 [

1 − e
− 2kπ
ν10

(n−ν20)
] [

1 − e
− 2kπ
ν10

(n+ν20)
]

, (3.68)

which reduces to the rate (3.43) given in the previous subsection when we set ν20 → 0 and

ν10 = ν0 in the above as expected. The rate is highly suppressed by the separation and

the integer k and for each given k the corresponding term appears likely enhanced by both

ν10 and ν20. The latter is particularly evident for large magnetic flux for which ν20 → 1/2

and the front factor tanπν20 → ∞. Note that the odd k gives positive contribution while

the even k gives negative contribution to the above rate. Also k = 1 term gives the leading

positive contribution to the rate.8 All these indicate that the presence of magnetic flux

appears to enhance the rate. Let us consider the small electric flux case. For this, we need

to consider only the leading term which is given by the k = 1 term in the above and for

a fixed non-vanishing ν20 it is

W ≈ 4n1n2π

ν10

( ν10

8π2α′

)
1+p
2
e
− Y 2

2πν10α
′ e

πν20
ν10 tan πν20, (3.69)

which is greatly enhanced by a factor of e
πν20
ν10 tan πν20/(8ν10) in comparison with the

similar rate given in the previous subsection. In particular, when the separation is on

the order of π
√

2ν20α′, i.e., the string scale, this rate can become very significantly large.

In other words, when the two bound states are in a close contact, the open string pair

production can be very significant. When this happens, we need to use the following

better approximated rate to make the evaluation

W =
4n1n2 π tanπν20

(8π2α′)
p+1
2

∞
∑

k=1

(−)k+1
(ν10

k

)
p−1
2
e
− k

2πν10α
′ (Y 2−2π2ν20α′)

. (3.70)

8A different enhancement of a similar rate by a magnetic flux in a different context, i.e., purely bosonic

string case, was explicitly considered in [37] (The corresponding supersymmetric case was briefly men-

tioned). In this case, what has been considered is an open string placed in an electric-magnetic background

and the two ends of an open string experience the same flux which can have both electric and magnetic

components, a generalization of the bosonic case considered in [30] by including a magnetic component.

Our consideration here is completely different: we have a system of two branes with a separation. In terms

of open string description, one end of string experiences an electric flux living on one stack of D-branes

while its other end experiences a magnetic flux living on the other stack of D-branes placed parallel at a

separation, a superstring analysis. As a result, unlike the case in [37], the present rate has a dependence

on the brane separation. Moreover, the enhancement factor in [37] is merely a Born-Infeld factor
p

1 + f2
2

(expressed in our notations), independent of the electric component, while the present enhancement is

given as e
πν20

ν10 |f2|/(8ν10) for fixed f2 with tan πν20 = |f2|, completely different. The ratio of these two is

e
πν20

ν10 |f2|/(8ν10

p

1 + f2
2 ) ≈ e

πν20

ν10 /(8ν10) ≫ 1 for |f2| ≥ 1 and small ν10.
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Let us make some numerical estimation of the rate given in (3.69) when the approximation

is valid and this may serve for sensing the significance of the rate mentioned above. For

this purpose, we take ν20 = 2/5, ν10 = 1/50 and the enhance factor given above is then

e
πν20
ν10

tan πν20

8 ν10
= e20π

25 tan 0.4π

4
∼ 3.6 × 1028. (3.71)

We also calculate the rate in string units for a few sample cases (note that we need to

have p ≥ 3 as mentioned earlier) in the following as

(2πα′)
p+1
2 W ≈ n1n2

(ν10

4π

)
p−1
2
e
−
Y 2

−2π2ν20α
′

2πν10α
′ tan πν20

≈ n1n2

(ν10

4π

)
p−1
2

tanπν20,

≈
{

0.49 for p = 3,

0.03 for p = 4,
(3.72)

where we have taken Y = π
√

2ν20α′ +0+ ≈ 2.81
√
α′, n1 = 10 and n2 = 10. So the rate can

indeed be significant for p = 3, 4 and can be larger if we take larger n1 and n2 when the

brane separation is a few times of string scale and before the tachyon condensation starts to

function. The above enhancement may have potentially realistic applications, for example,

to objects carrying both electric and magnetic fluxes or to one object carrying an electric

flux and the other carrying a magnetic flux in a similar situation in our Universe at early

times or to the present macroscopic objects carrying similar fluxes for which n1 and n2 are

very large, if string theories are indeed relevant to our real world. If this indeed happens,

the produced large number of open string pairs can in turn annihilate to give highly

concentrated high energy photons, for example, which may have observational consequence

such as the Gamma-ray burst. The related effects may also serve as an indication for the

existence of extra dimensions since it requires p ≥ 3 and the transverse dimensions are

also necessary. Moreover, the rate for p = 3 is at least one-order of magnitude larger than

the other p ≥ 4, the underlying dynamics may select 4 spacetime dimensions as special

against the others, if a brane-world view is taken. This enhancement will not occur if the

electric flux points along either of the two spatial directions of the magnetic flux as our

results given in the previous subsection show. Note that for small but fixed electric flux as

given in (3.69) or even for a finite electric flux as in (3.68), the corresponding rate diverges

when the magnetic flux becomes large and this may indicate a new instability to occur.

There is another singularity which can be examined by looking at the integrand

of (3.66) at large t′ when Y − π
√

2ν20α′ → 0− as

lim
t′→∞

e−
Y 2t′

2πα′ (cos πν10t
′ − coshπν20t

′)2

sinh(πν20t′)
∼ lim

t′→∞
e−

t′

2πα′
(Y 2−2π2ν20α′), (3.73)

which signals also the onset of tachyonic instability as in the pure magnetic case (Note

that this does not require a weak electric flux and is associated with the real part of the

amplitude). For strong electric flux, each term in (3.68) always diverges. So when y >
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π
√

2ν20α′, the pair production of open strings is the only process to lower the system energy

but as Y → π
√

2ν20α′, the tachyonic instability starts to occur and the pair production

continues and and become larger and larger. So the dynamics here may be rich and needs

further study before we can be certain to which the final state of this system leads.

4 Summary

In this paper, we exhaust the amplitude calculations of [1] between two non-threshold

bound states of the type of either (F,Dp) or (D(p−2),Dp) or both for the remaining cases

as specified in the Introduction. We find that the amplitude has the same basic structure

when the two fluxes share at least one common index. The amplitude is more general and

includes the previous one as a special case when the two fluxes share no common index.

The nature of the force acting between two bound states is always attractive when the two

fluxes are both magnetic or magnetic dominant in a sense defined in the text. For the rest of

cases considered in this paper, we are certain that the interaction is attractive only at large

separation. We also find that only for two situations the interaction amplitude can vanish

and if this happens, the underlying system preserves 1/4 of spacetime supersymmetries.

One is that the two fluxes have different nature with the magnetic flux sharing one common

index with the electric one, related to each other by (3.28), and the other is when the two

fluxes are both magnetic sharing no common index and having the same magnitude.

We also study the analytic structures of various amplitudes considered in this paper.

When the two fluxes are both magnetic or when the magnetic flux dominates over the

electric flux in effect and shares one common index, the amplitude diverges when the brane

separation is on the order of string scale just like the brane/antibrane situation studied

in [39, 40], signalling the onset of tachyonic instability, and this may serve as the dynamical

process to lower the energy of the system and to relax it to form the final stable bound

state as indicated in [38]. For the rest of cases studied, i.e., the cases with at least one

or one dominant electric flux present, there is always a non-vanishing open string pair

production rate associated with this flux. In particular, this rate can be greatly enhanced

when there is in addition a magnetic flux present and the electric flux is weak but with

the two sharing no common index. These may have realistic physical consequences for

and potential applications to objects in our Universe and their evolution when they carry

a weak electric field and a reasonable but fixed magnetic field and if string theories are

relevant to our real world. If this happens indeed, it may serve also as an indication for

the existence of extra dimensions since the spatial dimensionality of the Dp branes has now

to be p ≥ 3. Further, our usual 4 dimensional spacetime seemly has also a special role

since the rate in this case is at least one-order of magnitude larger than the other relevant

cases. Pursuing all these applications is beyond the scope of the present work and will be

postponed to future projects.

In addition to the usual strong electric flux singularity for the pair production rate, for

the present case we also find two new singularities when the brane separation is on the order

of string scale: one is associated with the pair production rate for a weak electric flux with

a large magnetic flux and the other is from the real part of the amplitude and associated
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with the onset of tachyonic instability but independent of the electric flux requirement.

The dynamics here may be rich and needs further study before we can be sure about the

final state of the system.
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A Supersymmetry

In this appendix, we will confirm explicitly the preservation of 1/4 spacetime supersymme-

tries for each of the three cases mentioned in the text when the corresponding amplitude

vanishes, namely, (e, m) when the electric flux shares a common spatial direction with

the magnetic flux along with (3.28) satisfied, and the (m, m) case when the two magnetic

fluxes share no common direction along with .

For this, let us first note that the condition for 1/2-supersymmetry preservation for

each bound state is

ǫ1 = η Γp+1 · · ·Γ9U(F̂j) ǫ2, (A.1)

where ǫ1 and ǫ2 are the two Majorana-Weyl supersymmetry parameters in IIA/IIB string

theory (the two have the opposite chirality in IIA but the same chirality in IIB), U(F̂j)

is defined in (2.12) due to the presence of flux, the sign η = ± and j = 1, 2. This

condition reduces to the familiar one when the flux is set to zero (note that we have used

Γ0Γ1 · · ·Γp = ±Γp+1 · · ·Γ9Γ11 and Γ11ǫ2 = ± ǫ2). The above clearly indicates that the

SUSY parameter ǫ1 is completely determined by ǫ2, therefore only half supersymmetry

is preserved for a given bound state when it is isolated, the well-known fact. For the

cases under consideration, we have two bound states with the Dp branes in one bound

state placed parallel to those in the other bound state at a separation. Therefore, for

such a system to preserve certain number of supersymmetries, we need to have (A.1) hold

simultaneously for j = 1, 2. This is equivalent to having (A.1) hold for either j = 1 or

j = 2 plus the following

U(F̂1) ǫ2 = U(F̂2)) ǫ2 (A.2)

for non-vanishing ǫ2. The number of non-vanishing components of ǫ2 satisfying the above

equation determines the number of unbroken SUSY for such a system.

Let us check the (e, m) case first. For this case,

U(F̂1) =
1 + f1Γ

0Γ1

√

1 − f2
1

, (A.3)
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where we choose the electric flux along x1-direction. Without loss of generality we can

choose the magnetic flux along x1 and x2 directions and then

U(F̂2) =
1 + f2Γ

1Γ2

√

1 + f2
2

. (A.4)

So (A.2) now becomes

(1 ± B) ǫ2 = 0, (A.5)

where we have expressed f2 in terms of f1 using (3.28) and

B =
√

1 − f2
1 Γ0Γ2 ± f1Γ

0Γ1. (A.6)

Since TrB = 0 and B2 = I32×32 with I32×32 the unit matrix, (A.5) says that only half of

the components of ǫ2 can be non-vanishing and therefore overall only 1/4 of the spacetime

supersymmetries can be preserved by this configuration. The (m, e) case can be similarly

discussed and the conclusion remains the same, i.e., the underlying system preserves only

1/4 of overall spacetime supersymmetries.

We now move to the (m, m) case mentioned above. For this case, we choose the first

magnetic flux F̂1 along x1 and x2 directions and so

U(F̂1) =
1 + f1Γ

1Γ2

√

1 + f2
1

, (A.7)

and without loss of generality we choose the second magnetic flux F̂2 along x3 and x4

directions and so

U(F̂2) =
1 + f2Γ

3Γ4

√

1 + f2
2

. (A.8)

(A.2) now reduces to

(1 ± Γ1Γ2Γ3Γ4) ǫ2 = 0, (A.9)

where we have used f1 = ±f2 which is precisely the one giving the vanishing amplitude in

subsection 3.2. Since TrΓ1Γ2Γ3Γ4 = 0 and (Γ1Γ2Γ3Γ4)2 = I32×32, by the same token, this

system preserves also 1/4 of total spacetime supersymmetries.
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